
1

Reusing Trace Buffers as Victim Caches
Neetu Jindal, Preeti Ranjan Panda, Smruti R. Sarangi

Department of Computer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
E-mail: {neetu, panda, srsarangi}@cse.iitd.ac.in

Abstract—With the increasing complexity of modern Systems-
on-Chip, the possibility of functional errors escaping design ver-
ification is growing. Post-silicon validation targets the discovery
of these errors in early hardware prototypes. Due to limited
visibility and observability, dedicated design-for-debug (DFD)
hardware such as trace buffers are inserted to aid post-silicon
validation. In spite of its benefit, such hardware incurs area
overheads, which impose size limitations. However, the effective
overhead could be reduced if the area dedicated to DFD could
be reused in-field. In this work, we present a novel method
for reusing an existing trace buffer as a victim cache of a
processor to enhance performance. The trace buffer storage space
is reused for the victim cache, with a small additional controller
logic. Simultaneous multi-threading allows further fine-grained
control of the victim cache, which can be shared between the
threads based on the requirements of the applications. We
also propose and evaluate different approaches to partition the
victim cache between threads. Experimental results on several
benchmark applications and trace buffer configurations show
that the proposed approach can enhance the average performance
by up to 8.3% with minimal area overhead.

Index Terms—Design-for-Debug, Post-silicon Validation, Vic-
tim Cache.

I. INTRODUCTION

Decreasing feature sizes have caused ever increasing levels
of on-chip component integration. Simulation or emulation
used in pre-silicon validation can take a prohibitive amount
of time to check for functional errors. During post-silicon
validation, applications are executed on the chip prototype at
native speeds and are analyzed using dedicated design-for-
debug (DFD) hardware, enabling the discovery of functional
bugs that may have slipped past pre-silicon validation [1],
[2]. The DFD hardware is used to record the state history of
important signals in the chip that could be critical in debugging
the chip.

The design of the DFD structure represents a trade off
between maximizing visibility and stringent area constraints,
since it becomes vestigial once the chip is in production.
The trace buffer is a typical DFD structure which consists
of memory elements and records the values of signals deemed
critical by the designer [3], [4]. These recorded signals can be
extracted outside the chip and analyzed to determine the root
cause of errors.

With increasing complexity and higher levels of integration
of modules on a single chip, the area consumed by DFD
structures increases significantly. This is a challenge for chip
manufacturers because they have to strike a balance between
competing goals; increasing visibility enables faster validation,
but increases the area overhead of the DFD hardware, which

becomes unusable when the chip goes into production (i.e.,
normal in-field operation).

Processor
Pipeline

Data
Cache

Trace
Buffer

(a) Debug Phase

Processor
Pipeline

Data
Cache

Victim
Cache

(b) In-Field

Fig. 1: High level illustration of the proposed approach. (a)
Trace buffer used to store debug data. (b) Trace buffer reused
as Victim Cache

We address this challenge by repurposing the DFD hardware
through reusing the trace buffer as a victim cache of the
processor. Reusing the DFD hardware allows the designers
to provide more space to validation structures as it no longer
constitutes wasted space. Victim cache is a backup buffer that
is designed to handle the conflict misses of the data cache [5].
It stores the recently evicted lines of the data cache and is
looked up when a miss in the data cache is encountered. A
miss in the data cache that hits in the victim cache is addressed
by swapping the contents of the data cache line and the
matching victim cache line. Mapping decisions of the victim
cache over the trace buffer are influenced by architectural
parameters such as width of the trace buffer. The standard
victim cache is a small fully-associative structure but we use
a set-associative structure which is easier to adapt from the
trace buffer. We propose to add a new victim cache controller
which enables us to use the trace buffer as a victim cache to
enhance performance.

The scenario described above is illustrated in Figure 1.
During the post-silicon validation phase (Figure 1a), the DFD
hardware is configured as a trace buffer. Following the val-
idation phase, the DFD hardware is configured as a victim
cache (Figure 1b). We outline the proposed modifications of
the traditional trace buffer structure so that it can operate as a
victim cache. In general, the trace buffer sizes could vary sig-
nificantly, sometimes making it larger than conventional victim
caches. The implementation of such non-standard victim cache
designs admits the scope of partitioning the victim cache for
Simultaneous Multithreading (SMT) cores. In Simultaneous
Multithreading, instructions from more than one thread can be
executed in parallel at any given stage of a pipeline [6]. Since

the data of all the application threads running on the same core
would be in the victim cache, the application thread with low
data reuse may flush the contents of other threads, resulting
in performance degradation. We propose two techniques to
partition the victim cache among application threads so that the
threads cooperate to make efficient use of victim cache. The
first technique, multi-mode victim cache, allows the victim
cache to operate in two modes: shared and exclusive. The
second technique partitions the victim cache efficiently using
a logistic regression based algorithm [7], [8].

The rest of this paper is structured as follows. Section II
surveys related work on both validation hardware and cache
partitioning. Section III discusses the methodology of reusing
the trace buffer as victim cache. Section IV discusses the
need of partitioning and the two techniques that are used
for partitioning the victim cache. Section V describes the
experiments and results. Finally, the conclusion and future
work are described in Section VI.

II. RELATED WORK

Related research can be classified into two categories on the
basis of the hardware validation structures: dedicated DFD
hardware for validation, and reuse of existing architectural
components for validation.

Significant research efforts have already been invested in
the area of dedicated DFD hardware. Storing signal history
inside the trace buffer helps in validating the chip as it
provides visibility into the chip [3], [4], [9]. Only a selected
set of signals can be stored in the on-chip trace buffers due
to size limitations. Researchers have proposed techniques to
identify the set of such critical signals [9]–[16]. The volume
of execution traces stored in the trace buffer can be reduced
significantly by determining when to start and stop the tracing
by using event triggers and embedded logic analyzers. Novel
methods have been proposed by researchers for defining the
event triggers [17]–[19]. Chandran et al. [20] have proposed
to store trace summaries along with recent execution traces to
reduce the stalls caused by the limited size of trace buffers.
Techniques have been proposed for reducing error detection
latencies (Lin et al. [21]) and compressing the volume of stored
data in the trace buffers [22], [23]. DeOrio et al. [24] propose
a methodology called Bug Positioning System for locating
inconsistent bugs arising out of the interaction of asynchronous
clock domains or varying electrical and environmental condi-
tions. The system has two components: a hardware structure to
log the activity signals and a post-analysis software algorithm
to identify the time and location of the bug.

Alternatively, several proposals aim to reuse existing archi-
tectural components to store traces, instead of using dedicated
hardware. DeOrio et al. [25] aimed at validating memory
consistency and coherence by storing activity logs in L1 and
L2 caches to observe memory operations during program
execution. Along these lines, Abdel-Khalek and Bertacco [26]
have suggested validating the NoC interconnect by period-
ically taking snapshots of the packets in flight and storing
those traces in node-specific L2 caches. Lai et al. [27] used
the data cache to store traces together with cache data during

validation. They configured some of the cache ways to store
trace data which includes bus traces, performance traces, and
processor traces, and used the write-back circuitry to dump
out the trace contents. Mammo et al. [28] also used L1 data
caches to store activity logs for validating memory consistency
in multiprocessor systems. These logs are aggregated to main
memory and can be further analyzed either on the processor
under verification or on another processor/host to detect any
memory consistency violations. An interesting use of the
instruction cache is proposed by Lai et al. [29]; they use it
for compressing program execution traces instead of inserting
additional hardware compressors. This line of work interferes
in some way with the normal functionality of the memory
system [30], as it can potentially hide some performance bugs.

Analogous to reusing architectural components for DFD,
our work attempts to reuse a standard DFD structure as
an architectural enhancement. The DFD hardware does not
interfere with the chip functionality during validation and is
used in-field to enhance performance. Such reuse is along the
lines of work by Basak et al. [31] who proposed to repurpose
the DFD hardware as security wrappers.

The victim cache idea was first introduced by Jouppi [5]
as an auxiliary structure that is looked up when a data cache
miss is encountered. Evicted lines of the data cache are placed
in the victim cache. Bahar et al. [32] suggested parallel look-
up in the victim and data cache for improved performance. In
our proposed design, the victim cache is accessed in parallel to
the data cache. Selective victim caching [33] uses a prediction
technique that selectively places incoming blocks either in the
direct-mapped L1 cache or the victim cache depending on the
past usage history of these blocks.

Cache partitioning is another research area related to our
proposal. Novel solutions have been proposed by researchers
for exclusively partitioning the shared last level cache among
different processor cores for performance and power improve-
ments [34]–[38]. This is conceptually related to our proposal
of partitioning the victim cache, but these techniques cannot
be used directly at the victim cache because the latter is a
much smaller structure that needs a lightweight solution. In
this work, we propose to partition the victim cache for a multi-
threaded SMT core and also present a comparison with the
application of standard cache partitioning.

III. REUSING THE TRACE BUFFER

Our architectural proposal is to reuse the trace buffer
when the processor-based system is in field, so that the area
dedicated towards the DFD structure is reclaimed and reused
to enhance the functionality.

A. Trace Buffer as Victim cache

We outline here the architectural changes that enable the
reuse of the trace buffer as a victim cache (VCache). These
include the addition of a victim cache controller logic to
improve performance. The DFD hardware can be configured
to be used as either a trace buffer during validation, or as a
victim cache during normal operation.

1) Baseline architecture: We use a LEON3 SPARC-based
CPU [39] as the baseline architecture. The standard design
includes a debug infrastructure in the form of a distributed
set of trace buffers organized as queues. The trace buffer in
a processor core is used to store the pipeline trace data. The
trace buffer controller (TB Ctlr) is used to control the data
stored in the trace buffer and receive control instructions as
well as timestamp information from a central Debug Support
Unit (DSU).

2) Proposed architecture: The memory space dedicated to
the trace buffer is proposed to be reused as victim cache stor-
age. The changes made in the modified processor architecture
are highlighted in blue in Figure 2. A new component victim
cache controller is added to the architecture to support the
new functionality. Unlike the standard victim cache [5] which
is architected as a small fully-associative structure, we use
a set-associative structure, which is easier to adapt from the
trace buffer with minimal changes. However, we impose no
size limit on the victim cache size, which can be derived from
the trace buffer size. To configure the DFD hardware as either a

Trace Buffer

vaddr

DCHit
data

trace data

index

vc_en
(From DSU)

TB
Ctlr

taddr

v
d
a
ta

DA0

TagA TagDTagCTagB

A1

C1C0
B3B2B1B0
A3A2

D0
C3C2
D3D2D1

Tag
RAM

Data
RAM

Data Cache

128 bit

DCache
Ctlr

ct
rl

tdata_out

ct
rl tdata_in

VCache
Ctlr

timestamp
(From DSU)

Fe
tc

h

D
e
co

d
e

E
xc

e
p

E
xe

c

W
B

R
e
g

A
cc

M
e
m

maddr
ctrl

data

in
de

x
ta

g

da
ta

VCHit
TagIndex/
DataIndex

} VCache
Data Region

} VCache
Tag Region

To DSU

128 128

vdata
32

128
1

128

1

Fig. 2: Modified LEON3 architecture

trace buffer or a victim cache, a new control signal vc en, sent
by the central DSU is added, as shown in Figure 3. The victim
cache controller is connected to the data cache (DCache) and
the trace buffer controller, but not to the main pipeline.

Data Storage and Address Mapping: The default trace
buffer is a monolithic single-port memory structure. To reuse
it as a victim cache, we divide the address space into tag and
data regions, as in a data cache. In the data region, each line
represents a cache line of the data cache and its corresponding
tag is present in the tag region. Considering a trace buffer
width of 128 bits (i.e., 4 words), one line in the tag region

corresponds to 4 lines in the data region. For each request,
the victim cache controller reads a tag line and compares all
four tags simultaneously, as in a 4-way set associative cache.

When a memory request to address maddress arrives, the
victim cache controller indexes the request in the tag region
and the corresponding data line is fetched from the data
region and passed to the data cache controller. The data cache
controller updates its memory with this new value and returns
the result to the pipeline. For a trace buffer of size T Bytes,
the victim cache mappings for the above configuration are
determined as:
Size of Data region = 4T/5 Bytes
Size of Tag region = T/5 Bytes
Width of Trace buffer = 16 Bytes
TagIndex = (maddress� log2 16)&(nsets− 1)
DataIndex = si+ [TagIndex× 4 +HitIndex]
where nsets = T/5 × 1/16, si is the starting index of the
data region, and HitIndex is one of {0, ..., 3} depending on the
matching tag within the tag line. The TagIndex and DataIndex
are computed as shown in Figure 3.

vaddr maddr

&

>>4nsets-1

TagIndex

Comparators

tdata_out

128

HitIndex
si

Enable

Hit/
Miss

DataIndex

Index

From FSM

From
FSM

Fig. 3: The index computation logic in the victim cache
controller

Victim Cache Controller: Figure 4 depicts the finite state
machine of the victim cache controller for read and write
requests. When a core initiates a memory access request, the

Update TB

Read TagIdle

Read Data

R/W Req

DCHit

DCHit, VCHit,
vaddr = eaddr,
vdata = edata

data = tdata_out
vaddr = eaddr,
vdata = edata

True

DCHit,
VCHit

Fig. 4: FSM of the victim cache controller. DC: data cache,
VC: victim cache

VCache controller transitions from the Idle state to the Read
Tag state. In that state, it checks the hit/miss status in the trace
buffer and notifies the data cache controller. Simultaneously,
the DCache controller also notifies its status to the VCache
controller. There are three possible scenarios:

1) Data cache hit and victim cache miss (DCHit = 1 and
VCHit = 0): The data cache controller processes the
request and the victim cache controller transitions to Idle
state without performing any action.

2) Data cache miss and victim cache hit (DCHit = 0 and
VCHit = 1): The VCache controller transitions to the
Read Data state and reads the required line from the data
region. Then it transitions to the Update TB state, where
the two controllers exchange their data and the VCache
controller updates its content with the line evicted from
the data cache. The data cache controller passes the data
to the pipeline for the read request and updates it in
memory for the write request. For our experiments, we
have used write-through data caches with write-allocate
cache miss strategy.

3) Data cache miss and victim cache miss (DCHit = 0 and
VCHit = 0): The data cache fetches a line from the next
level and evicts one line. The VCache controller updates
the trace buffer with this evicted line.

We cannot have a hit in both caches simultaneously as the two
are mutually exclusive. One limitation of this methodology
is we cannot debug the victim cache together with that
architecture simultaneously. However, if necessary, the victim
cache contents can be extracted by switching to the validation
phase.

IV. DYNAMIC VICTIM CACHE PARTITIONING

Modern processor architectures have multiple hardware
threads running on the same core. The victim cache design
proposed in Section III-A2 uses the least recently used (LRU)
replacement policy to store the data in the shared victim
cache based on the application requirements. However, since
the victim cache would contain data for multiple application
threads, there is the risk of an application with low data
reuse flushing out the data of other applications, which may
significantly degrade the performance of the overall system.
We propose to partition the victim cache between the hardware
threads, so that the threads cooperate to make efficient use of
the victim cache.

A. Motivation

We use the bzip2 and gamess benchmarks to demonstrate
an opportunity to improve performance by partitioning the
victim cache. The results from Section V-B indicate that the
performance of bzip2 improved by less than 1% when the
trace buffer was used as a victim cache. On the other hand,
the performance improvement of gamess was close to 14%.
Thus, gamess benefited from the victim cache much more than
bzip2.

If bzip2 and gamess ran concurrently, they would compete
for victim cache space. Figure 5 shows the number of hits
in the victim cache with respect to the number of insertions
performed by each benchmark during the execution of 500
million instructions. Each point in the graph represents the
number of hits and insertions during a block of 1 million
dynamic instructions. We observe that bzip2 inserts a large
number of cache lines into the victim cache, but the number

of hits is relatively small because most of the lines are not
reused. On the other hand, the number of hits of gamess is
higher and could be further improved by reducing the victim
cache pollution caused by bzip2.

Victim Cache Insertions

#
 V

ic
tim

 C
ac

he
 H

its

0
0

5000 25000200001500010000

12500

7500

10000

5000

2500

hits_bzip2 hits_gamess

Fig. 5: Victim cache performance when bzip2 and gamess are
run concurrently

B. High-Level Architecture

Our initial target architecture includes two hardware threads
per core, which is commonly found in many existing archi-
tectures such as the AMD Zen microarchitecture and Intel
Itanium Tukwila. We generalize the technique for multiple
threads per core in Section IV-D4. Figure 6 depicts the
high level architecture where the partitioning controller is
implemented at the Debug Support Unit (DSU). The DSU
uses statistics maintained by the data cache controller and
victim cache controller to adaptively partition the victim cache.
The DSU contains a trace buffer that is usually used during
the validation phase. However, we reuse it to temporarily
store some statistics needed to guide the partitioning. The
components highlighted in blue are the new components
added to enable the partitioning and their implementation
depends on the policies discussed in the following sections.
The partitioning unit passes w values, each log(n) bits wide,
where w represents the number of ways in the victim cache
and n represents the number of hardware threads. These values
specify which ways should be allocated for which thread.

When a line is evicted from the data cache, it is stored in
the victim cache. The core (not shown Figure 6) accesses the
data cache and the victim cache concurrently. If a cache line
is found in the victim cache, it is moved to the data cache.

Data Cache
Controller

VCache
Controller

Tag
RAM

Data
RAM

Trace Buffer
reused as
VCache

vaddr,vdata

Cache
Statistics
Registers

VCache Hits
Counter

data

in
d

ex

ta
g

d
at

a

ct
rl

in
d

ex

ct
rl

d
at

a

32 × n 32 × n

DSU's
Trace
 Buffer

Score/ Util
Compute Unit

Partitioning/
Control

 Unit

td
ou

t
td

in

ctrl

ctrl data
log(n)

w

ctrl

Debug Support
Unit

Fig. 6: High level architecture

C. Multi-Mode Victim Cache

The victim cache is normally shared between the two
threads and data of one thread can evict that of either thread,
depending on the LRU policy decision. In this shared mode,
a thread might insert excessive cache lines into the victim
cache, potentially evicting useful data of the other thread. This
may significantly degrade the latter’s performance even while
not necessarily improving its own performance. To alleviate
this concern, we introduce the exclusive mode, in which the
contents of the victim cache may be modified by only one
thread, while permitting read access to both threads.

During execution, the partitioning controller uses collected
statistics to determine whether the victim cache should operate
in shared mode or exclusive mode. To dynamically make this
decision, we use the number of victim cache hits and insertions
as follows.

Execution is divided into sequences of dynamic instructions
called blocks. For block j, the victim cache utilization for each
thread is defined as follows:

V Utilij =
V Hitsij
V Insertij

(1)

where V Hitsij represents the number of victim cache hits
and V Insertij represents the number of insertions performed
by thread i in the victim cache.

Since the memory access behavior of a hardware thread
may change over time, the partitioning controller monitors the
behavior of each hardware thread separately and keeps track
of the utilization metric to select the mode that leads to the
highest performance improvement.

Initially, the victim cache begins operation in the shared
mode. Figure 7 shows how the DSU uses the victim cache
utilization metric to switch between the shared and exclusive
modes. The process shown in that figure is performed at the
end of each block j. It takes as input the parameters required
to compute the victim cache utilization and the current window
and block number. Figure 8 illustrates an example scenario. If
the victim cache is in shared mode, the DSU keeps track of
the number of blocks in which each thread utilized the cache
better by incrementing a counter associated with that thread.
After a predetermined number of blocks, called the window
size (WSize), it determines whether a switch to exclusive mode
is required. If one thread utilized the victim cache significantly,
the DSU sets the victim cache in exclusive mode so that only
that thread inserts into the victim cache. The other thread
would still have read access but cannot insert lines into the
victim cache. This is determined using a fixed fraction F
with values in the range of 0.6 − 1.0 to make sure that the
condition is true for only one thread. Both F and WSize
are experimentally determined. Before switching to exclusive
mode, the threshold (th) is computed, which is the average
utilization of the selected thread (sel) that got the exclusive
access. This threshold is used to determine when to switch
back to the shared mode. Average Utilization (AvgUtilik) of
thread i for the kth window is defined as follows:

AvgUtilik =

∑WSize−1
j=0 V Utilij

WSize
(2)

j: current block, k: current window

VHits
j

0..1
: # cache hits for th 0 and 1 in block j

VInsert
j

0..1
: # insertions performed by thread 0 and 1 in

 the victim cache in block j

VUtilij = VHitsi
j / VInserti

j for i = 0,1 in block j

count ++

mode =
shared?

count=
WSize?

yes

no

AvgUtilik = ∑
j

n=j-WSize+1 VUtilin ÷ WSize for i=0,1

count = 0

mode =
shared?

AvgUtilsel
k < th

&
AvgUtilsel

k-1 < th?

yes

counteri ++ where
VUtilij is max for i=0,1 mode = Shared

counteri ++ where
VUtilij is max for i=0,1

yes

counter0 >
F × WSize?

mode = Exclusive0

nocounter1 >
F × WSize?

yes

mode = Exclusive1

no

th = AvgUtilsel
k

counter0..1 = 0

counter0..1 = 0

END

yes

no

no

START

no

yes

Fig. 7: The victim cache mode selection process

where V Utilij represents the victim cache utilization value
of thread i for block j.

If the victim cache is in exclusive mode, the DSU maintains
the average utilization of the selected thread for two consecu-
tive windows. If the average utilization drops below th for two
consecutive windows, the victim cache is switched to shared
mode.

D. Victim Cache Partitioning

A simple multi-mode victim cache policy would alleviate
victim cache pollution caused by two hardware threads. How-
ever, a hardware thread may utilize the victim cache better than
other threads, without necessarily requiring all of the victim
cache. Exclusive access might degrade the performance of the
remaining threads. In this section, we propose a technique to
partition the cache proportionally with respect to utilization.

Figure 9 shows an illustrative example of victim cache par-
titioning for a 2-thread configuration. Initially, each hardware
thread has been allocated half of the victim cache. At time t,
the DSU determines that thread1 is utilizing the victim cache
better than thread0, and it transfers a way from thread0 to
thread1. Later, at time t + $, the memory access behavior of

counter_th0 >
F * WSIZE

th=AvgUtil0i

Mode
Window

V
ic

tim
 C

ac
he

 U
til

iz
at

io
n

Thread0

Thread1

Shared ExclusiveThread0 ExclusiveThread0 Shared

Win i Win i+1 Win i+2 Win i+3

0 Insertions for Thread1

AvgUtil0i+1

AvgUtil0i+1 and AvgUtil0i+2 < th} } }AvgUtil0i+2

Fig. 8: Multi-mode Victim Cache

V
ic

tim
 C

ac
he

 U
til

iz
at

io
n

 Ways

Time0 t t + $

Thread0

Thread1

}
}

Utilization-Thread1 >
Utilization-Thread0

Assign more
ways to Thread1

}

Utilization-Thread0 >
Utilization-Thread1

}

Assign more
ways to Thread0

Fig. 9: Victim Cache Partitioning

the two threads changes, as a result of which the DSU gives
more cache ways to thread0.

Table 1(a) shows the metrics that the DSU uses to decide
how many cache ways to give to each thread. The metrics are
computed for each thread using:

1) Number of victim cache hits
2) Number of load misses
3) Number of store misses
4) Total number of misses
5) Total number of hits
6) Number of victim cache insertions

We assume that each thread maintains these counters in
hardware performance registers and the DSU can access these
registers. Such performance counters are typically present in
modern architectures.

1) Victim Cache Partitioning Technique: We use a machine
learning technique, multiclass logistic regression [7], [8], [40],
to determine how much of the victim cache to allocate to each
thread. Multiclass logistic regression takes as input a set of
training instances of the form {(vh, lm, sm, cm, ch, insert),
Wij } where Wij is the class label and i represents the number

of ways assigned to thread 0 and j = 4− i. Table 1(b) shows
the possible class labels and the corresponding partitioning for
two hardware threads. We discuss the training set collection
in Section IV-D2. The outputs are a set of 6 weights and an
intercept for each class, which are stored in the trace buffer of
the DSU. The weights are learned offline using the liblinear
library [41]. At run-time, the DSU uses the following two
equations to determine how to partition the cache:

logit(Wij) = α0 + α1vh+ α2lm+ α3sm+

+α4cm+ α5ch+ α6insert
(3)

P (Wij) =
1

1 + e−logit(Wij)
(4)

where α0 is the intercept and α1 to α6 are the weights for
class Wij .

The DSU chooses the partitioning that corresponds to the
class with the highest probability P . The computation of the
probability could be expensive because of exponentiation op-
eration; however, the exact probability need not be computed.
Since the probability varies monotonically with logit(Wij),

Metric Description
vh Ratio of V HitsTh0 to V HitsTh1
lm Ratio of LoadMissesTh0 to LoadMissesTh1
sm Ratio of StoreMissesTh0 to StoreMissesTh1
cm Ratio of CacheMissTh0 to CacheMissTh1
ch Ratio of CacheHitsTh0 to CacheHitsTh1

insert Ratio of InsertionsToV CacheTh0 to InsertionsToV CacheTh1
(a) Features Description

Class label Number of ways
Thread0 Thread1

W04 0 4
W13 1 3
W22 2 2
W31 3 1
W40 4 0

(b) Class labels and the corresponding parti-
tioning

TABLE I: Description of the features and the class labels

we can choose the class with the highest logit(Wij) instead.

W22

W31W13 W40W22W04

W31W13 W40W22W04

W31W13 W40W22W04

(Time = 10)

(Time = 3)(Time = 9) (Time = 7)(Time = 10)(Time = 6)

(Time = 12)(Time = 20)(Time = 15)(Time = 8)

Best Selection

Block 0

Block 1

Block 2

Block 3

Random Selection

Fig. 10: Selection of class labels during training: alternating
best and random selection

2) Data Collection Strategy for Training: We need to
construct a training set that correlates the metrics shown in
Table 1(a) with one of the partitioning classes shown in Table
1(b). To do this, we ran benchmark pairs for 1000 blocks.
The victim cache begins with the partition that corresponds to
class W22. The construction of the training set is demonstrated
in Figure 10. After one block, we can either continue in the
same class or change to one of the other four classes (W04,
W13, W31, and W40). To construct a representative training set,
we need to exercise all the different possible class transitions.
The number of possibilities grow exponentially, making it
prohibitive to cover a large number of blocks exhaustively. To
prune the search space, we could choose the class that yields a
locally optimal performance. Therefore, class W13 is selected
as this class requires the minimum number of cycles to execute
the instructions of Block 1. However, this process may not
necessarily cover all the class transitions, which is necessary
to train the system comprehensively. Therefore, class W31 is
selected at random after Block 1 instead of class W04. In order
to ensure a good coverage, after each block, we choose either
the current best class or a random class, with a probability of
0.5 each. At the end of each block, the chosen class together
with the measured features are added to the training set.

3) The Partitioning Controller: The partitioning controller
operates according to the state machine shown in Figure 11.
The initial state is S0. At the end of every block, the parti-
tioning controller computes the logit function for each class.
Then, it compares the number of ways assigned to thread
0 for the class label that corresponds to the highest logit
value with the current class label’s thread 0 way value. For
example, if the current state is S0, and it turns out that the
computed class label, say W22, has more ways assigned to
thread 0 than the current class label, say W13, the partitioning

controller transitions to state S2. At the end of the next block,
if the computed class label is, say W31, which also has more
ways for thread 0 than the current class label (still W13), the
partitioning controller transitions to state S0 and changes the
current class to W22.

S0

S1 S2

cl
as

s
<

cu
rr_

cl
as

s class > curr_class

class < curr_class

class < curr_class/
Dec curr_class

class = curr_class

class > curr_class

class > curr_class/
Inc curr_class

class = curr_class

class = curr_class

Fig. 11: Finite state machine for partition controller. class and
curr class refers to the number of ways assigned to thread0
for the corresponding class label

It takes at least two successive blocks (two state changes) to
change the current partitioning. We observed experimentally
that if the partitioning changed at the end of each block
(one-stage prediction), the performance may not significantly
improve and it might even degrade because the learned model
might choose a class that is not suitable for the future behavior
of the hardware threads. Having the current class change after
two blocks introduces a hysteresis that alleviates the impact
of such mispredictions. Similarly, the way-allocation changes
the ways assigned to each thread by at most 1 at the end of
every block for the same reason.

Computing the logit function requires the hardware neces-
sary to perform division and multiplication. We use a simple
circuit consisting of a single adder and a single shifter to
perform sequential implementations of the multiplication and
division operations in the partitioning controller. The compu-
tation time is, nevertheless, small in comparison to the block
execution time.

4) Generalization to multiple threads: We discussed above
the victim cache partitioning scheme in a system with two
threads and four victim cache ways. A logistic regression

classifier with five classes (Equation 3) was used to determine
the partition value. The weights for those five classes were
learnt offline and stored in the DSU’s trace buffer.

logit(W ij
t,w−t) = α0 + α1

vhi

vhj
+ α2

lmi

lmj
+ α3

smi

smj
+

+α4
cmi

cmj
+ α5

chi

chj
+ α6

inserti

insertj

(5)

We generalize the above technique for any number of
threads and any associativity of the victim cache. However,
partitioning is still performed by considering two threads at a
time. To partition a w-way victim cache among two threads,
the total number of possible partitions would be w + 1 and
a classifier with w + 1 classes is sufficient to determine the
number of ways assigned to each thread. The DSU computes
the logit value using Equation 5 for all the possible w + 1
classes and for every pair (i, j) of threads. In Equation 5,
t and w − t are the number of ways assigned to thread i
and j, respectively, α0 is the intercept, and α1 to α6 are the
weights learnt for class Wt,w−t. The total number of logit
values computed is nC2× (w+1). A class is defined only by
the partitioning, not by the pair of threads under consideration.
Therefore, the weights are the same for all pairs of threads
as long as the partitioning is the same. On the other hand,
the values of the features (vh, lm, sm, ch, cm, insert) change
according to the thread behavior.

Figure 12 shows the computation of the current victim cache
assignment for each thread. This process is carried out at the
end of each block. n denotes the number of threads and w
denotes the number of ways. At each iteration of Loop 1,
two threads are selected and the corresponding logit values
are computed. An assignment of all the ways of the cache
on the two threads is chosen according to the class that
corresponds to the maximum logit value. When the loop ends,
each P [i] contains the relative demand of the corresponding
thread. Loop 2 compares the current partitioning with the new
thread requirements and takes a decision of either increment
(1), decrement (-1) or no change (0) for each thread. Let us
consider an example, shown in Table II, with 4 threads (th0,
th1, th2, th3) and an 8-way set associative victim cache. The
example starts with the current assignment of two ways to
each thread. In the first iteration, where th0 is paired with
th1, the logit value for all the 9 classes are computed, and the
maximum logit value is for class W6,2. Therefore, P [0] and
P [1] are updated to 6 and 2, respectively. Similarly, all P [i]
values are updated for all the possible six pairs of threads in
the following iterations.

The DSU performs the partitioning recommended by the
output of that process if it can find a (Inc, Dec) pair of two
threads. Otherwise, the partitioning does not change. Here
also, the DSU uses a 2-stage prediction technique similar to
the one discussed in Section D.3.

5) Replacement policy: We have used a variant of the LRU
replacement policy in the victim cache controller. The LRU
indices in the victim cache are updated only at the time of
insertion, unlike the data cache where the LRU indices are
updated at the time of insertion as well as upon cache hit.

Curr_W[i] for i = 0 to n: each element represents
the number of ways currently assigned to each thread

i ≠ n-2?

yes

no

START

noyes

P[i] = 0 for i = 0 to n
i = 0, m = 0

j = i + 1

j ≠ n-1?

Compute logit(Wij
t,w-t) for t = 0 to w (Eq 5)

Find t where logit(Wij
t,w-t) is max

P[i] = P[i] + t, P[j] = P[j] + w - t
j = j + 1

i = i + 1

nom ≠ n-1?

W[m] = (P[m] / (P[0] + P[1] + .. + P[m])) × w

W[m] >
Curr_W[m]

W[m] <
Curr_W[m]

W[m] =
Curr_W[m]

m = m + 1

END

yes

P[m] = 1 P[m] = -1 P[m] = 0

Loop 1

Loop 2

Fig. 12: Computation of the new victim cache assignment

Threads th0 th1 th2 th3
CurrAssn 2 2 2 2
i=0, j=1 6 2
i=0, j=2 4 4
i=0, j=3 8 0
i=1, j=2 2 6
i=1, j=3 2 6
i=2, j=3 8 0

Sum 18 6 18 6
WaysReq 18×8

48 = 3 6×8
48 = 1 18×8

48 = 3 6×8
48 = 1

Inc (1) Dec (-1) Inc (1) Dec (-1)

TABLE II: An example of executing Algorithm 2 for 4 threads
and 8 ways

When there is a hit in the victim cache, the requested line is
returned to the data cache and invalidated in the victim cache.

For any thread, the victim cache controller can search the
data in all the w ways, but can insert only in the thread’s
partition.

One simple way is to use a separate LRU indexing domain
for each partition, which results in a timing overhead whenever
the partition changes for the latency-critical victim cache. To
overcome this, we have used a single indexing domain as was

Thi Thj

Thi

Thi Thi Thj

Partition

Invalid Invalid

Invalid

(a) Invalid victim cache line

Thi Thj

Thi

Partition

Thi

Thi Thi InvalidThi

Invalid

(b) Valid victim cache of other thread

Thi

Partition

Thi Thi Thi
2 01LRU

Thi Thi Thi
0 12

Invalid
3

Invalid
3

(c) Least recently used victim cache line

Fig. 13: Replacement Policy

maintained without any partitioning. For any insertion request
by threadi, there are three choices as shown in Figure 13:

1) If there is an invalid cache line in the partition of threadi,
the new cache line is inserted there (Figure 13(a)).

2) If there is a valid cache line that was inserted by
the other thread at some point in the past when the
corresponding cache way was owned by the other thread,
the new line is inserted there (Figure 13(b)).

3) Otherwise, the least recently used line in the partition
of threadi is replaced with the new cache line (Fig-
ure 13(c)).

Whenever a new cache line is inserted into the victim cache,
all the LRU indices are updated accordingly.

V. EXPERIMENTS

A. Setup

We implemented our victim cache design on the
LEON3 [39], a synthesizable VHDL model of a 32-bit SPARC
V8 processor. The standard design consists of an instruction
trace buffer on every core; the trace buffer is a circular queue
of 128-bit width and a configurable size ranging from 1KB to
64KB. We synthesized our design using Cadence Encounter
RTL compilerwith a 90nm technology standard cell library
to understand the area and timing costs of our proposal. As
the large SPEC benchmarks could not be simulated with the
detailed VHDL model, we modeled the hardware separately in

the Sniper full system simulator [42] to study the performance
effects. We varied the size of the L1 data cache across our
experiments and used a 512KB L2 cache. We evaluated our
proposed architecture using several SPEC 2006 benchmarks
and for each benchmark, we used the Simpoint [43] tool
to identify a representative dynamic instruction sequence of
length one billion.

B. Impact of Trace Buffer Reuse

We first evaluate the overall system performance improve-
ments obtained by using the trace buffer as a victim cache
compared to the base architecture. Figure 14 shows the
speedup attained in sixteen benchmarks for different data
cache sizes while fixing the trace buffer at 2.5KB and 5KB,
a small size compared to the data cache, which highlights the
usefulness of reusing the trace buffer as a victim cache. The
relatively high speedup of 14% (Trace Buffer size = 2.5KB)
and 17% (Trace Buffer size = 5KB) for gamess is due to the
high fraction of memory operations performed by it. In the
case of povray for 32KB cache, we observe that the fraction
of data cache lines that are used after eviction is around 90%.
These observations are independently corroborated by other
studies [44]. In the case of bzip2, we observe that around 55%
of the lines that are evicted from the data cache are unused,
resulting in small performance improvements. We observe no
significant improvements with mcf and hmmer, although both
are cache intensive programs. The two applications exhibit a
thrashing behavior, and more than 55% of the evicted lines
are not reused. Therefore, they do not benefit from the victim
cache. lbm and gromacs are compute intensive applications
with 35% and 40% memory operations, respectively. We
do not observe any improvement with lbm as more than
60% of the evictions are unused. However, we observe an
improvement of 2.1% with gromacs because more than 80%
of the evictions are useful.

L1 DCache size(KB)
TB si

ze
(K

B)

 A
vg

. S
pe

ed
up

(%
)

Fig. 15: Impact of varying trace buffer sizes

Figure 15 shows the performance improvements when vary-
ing both the trace buffer and data cache sizes, averaged over
all the sixteen benchmarks. We observe that the victim cache
is more effective for smaller caches as compared to larger
caches. This is expected, as the small trace buffer translates to
a higher relative size increment for smaller caches. However,
even relatively small trace buffer sizes result in non-trivial

(a) Trace Buffer size = 2.5KB (b) Trace Buffer size = 5KB

Fig. 14: Performance improvement for different data cache sizes

performance gains, which is significant considering that the
DFD structure would have gone unutilized without this reuse.

We observe no significant improvement by increasing the
associativity of the victim cache from 4 to 8 while keeping
the overall size of the victim cache the same. Note that the
access time of a 4-way set-associative victim cache is 5 cycles.
To increase the associativity from 4 to 8, the trace buffer needs
to be read twice as the two lines of the tag region are mapped
to the same set, which increases the access time to 6 cycles.

C. Dynamic Victim Cache Partitioning

We first evaluate the overall system performance improve-
ment obtained by partitioning the victim cache between two
hardware threads compared to the baseline architecture where
the victim cache is in the shared mode. The two hardware
threads run two different SPEC 2006 benchmarks, which are
classified into three categories: compute-intensive, memory-
intensive, and mixed. We consider 23 different combinations
of benchmarks and different data cache sizes while keeping
the size of the trace buffer fixed at 2.5KB. We have selected
pairs of benchmarks from the same category and from different
categories to cover different possible behaviors. The window
size for multi-mode is 10 where each block is of 1 million
instructions and the fraction used to compute the threshold
is 0.7. Different sets of benchmark pairs (not included in the
evaluation) were used for training data collection.

Figure 16 shows the comparison of the speedups attained
using multi-mode and logistic regression for an 8KB data
cache. Some benchmarks, such as gamess, povray and tonto,
utilize the victim cache much better than others, such as bzip2,
perlbench and h264ref. Therefore, when running bzip2 and
gamess, the partitioning controller detects that the utilization of
gamess is substantially better than that of bzip2. Consequently,
it exclusively provides the victim cache to gamess most of the
time in both the techniques. This also explains the perfor-
mance improvement for hmmer and gamess. hmmer exhibits
the thrashing behavior and evicts the useful data of gamess
benchmark, therefore the partitioning controller gives more
preference to the gamess benchmark in both the techniques.
However, when running povray and gamess together, the
multi-mode victim cache gives exclusive access to one of the
benchmarks at a time, even though both of them could benefit

from the victim cache. In shared mode, the two benchmarks
evict each other’s data and neither makes efficient use of the
victim cache. This is eliminated in the multi-mode victim
cache, leading to a performance improvement. On the other
hand, in victim cache partitioning, both benchmarks get to uti-
lize part of the victim cache, resulting in a significantly higher
speedup. This also explains the performance improvement for
povray and tonto. We observe no significant improvement with
hmmer and lbm as lbm is a compute-intensive application and
does not make much use of the victim cache.

Figures 17 and 18 show the speedup attained by using the
multi-mode victim cache and victim cache partitioning, respec-
tively, for different data cache sizes. The average speedup due
to multi-mode victim cache is 2.45% and the average speedup
due to victim cache partitioning using logistic regression is
4.2% for an 8KB data cache. For larger data cache sizes, the
victim cache becomes less beneficial because more data can
fit in the data cache.

We observe that some of the benchmarks do not show
significant improvement when run separately, however, mixes
of these applications show significant improvements. For ex-
ample, the povray-tonto mix shows a relatively high speedup
of 8.2%. However, when the benchmarks run separately (Fig-
ure 14), they show a speed up of only 3% and 4%, respectively,
for an 8KB data cache. The reason for this is, when povray
and tonto run separately, there is no interference in the data
cache and the victim cache is not very useful. Therefore, the
victim cache is particularly useful for the mix scenario. This
also explains why the gain is significant for the 8KB data
cache and not for the 16KB data cache.

Figure 19 shows the speedup comparison due to two strate-
gies: (i) one-stage prediction, and (ii) changing the partition at
the end of two blocks as decided by the finite state machine in
Figure 11. It is clear from the graph that the latter finite state
machine prediction is always better than one-stage prediction.
One-stage prediction even degrades the performance for some
cases as the learned model might have chosen a wrong
class which is not suitable for future behavior. Delaying the
reconfiguration by waiting for an additional block alleviates
the impact of such mispredictions.

To our knowledge, there are no cache partitioning tech-
niques proposed for victim caches as they are traditionally

Label Benchmark

a bwaves

b cactus

m perlbench

l tonto

k gobmk

j sjeng

i hmmer

h xalan

g gromacs

f lbm

e bzip2

d gamess

c povray

n h264ref
o astar

Fig. 16: Speedup comparison of multimode and Logistic Regression

Fig. 17: Performance Improvement using Multimode victim cache partitioning

Fig. 18: Performance Improvement using Logistic Regression

fully-associative. We compare our results against the utility-
based cache partitioning (UCP) technique [37]. The technique
was originally proposed for the last level cache; however, we
implemented it for the victim cache. Figure 20 shows the
speedup comparison. The UCP technique provides at least
one way to each benchmark and partitions the remaining
ways according to the marginal utility value. However, in our
proposed architecture, the victim cache is not placed on the
main path and operates in parallel to the data cache. Therefore,
it is not necessary to give at least one way to each thread. Our
technique takes advantage of this opportunity by providing the
complete victim cache to one of the threads during execution,
resulting in significant performance improvements in many
cases. For some of the benchmarks, UCP performs better
because of its higher prediction accuracy. The UCP technique
incurs a significant area overhead. We have also considered
32 sets to maintain the profiling information and 24 bits (3
bytes) to store the tag for the UCP implementation. Therefore
the total area overhead to maintain the profiling information
is 32 × (3 × w) × n bytes, where w is the number of ways
and n is the number of threads. For a system with 2 threads
and 4-way set associative cache, the profiling area overhead
of UCP is 768 bytes (4% of the total area). It is larger
with more threads and higher associativity. In comparison, our
proposed technique uses performance counters already present
in processors, and reuses the DSU’s trace buffer, leading to a
smaller area footprint.

Figure 21 shows the performance improvement for 4 threads
and an 8-way set associative victim cache, where the size of
the trace buffer is 5KB. The relatively high speedup of 13%
for the hmmer-lbm-sjeng-gobmk mix is due to the thrashing
behavior of hmmer. In shared mode, it evicts a lot of useful
data of sjeng and gobmk, which is avoided by the victim cache
partitioning controller. This also explains the improvement
for hmmer-bwaves-povary-gamess. The speedup for hmmer-
sjeng-gobmk-tonto is less than hmmer-lbm-sjeng-gobmk. It is
because of compute-intensive nature of lbm and the complete
victim cache is available for sjeng and gobmk. However, in
the other mix, tonto does require a significant share of the
victim cache. All the four benchmarks in the gamess-sjeng-
gobmk-tonto mix are memory-intensive and the corresponding
performance improvement is 7.5% compared to the shared
mode. We observe no significant improvement with xalan-
hmmer-h264ref-astar because of the compute-intensive nature
of the three applications and hmmer exhibits a thrashing
behavior. The average speedup for 4 threads and an 8-way set
associative victim cache is 3.97%, where the trace buffer size
is 2.5KB. The results are averaged over the fifteen benchmark
mixes considered in Figure 21.

Victim cache partitioning always improves performance to
a greater extent than the multi-mode victim cache. However,
it has a higher associated area overhead, leading to an area-
performance trade-off between the two techniques. The pre-
ferred technique may depend on the space constraints on
the system. We also implemented and evaluated partitioning
the L1 data cache alone and simultaneously with the victim
cache; this did not improve over the results delivered of our
proposal and the overheads were higher. The possibility of

improving performance through a tighter co-ordination of the
two partitionings is a topic of future research.

D. Synthesis Results

The area and power overheads of the individual controllers
are shown in Table III. Traditionally, the trace buffers are
power gated, however, the infield-reuse of trace buffer (size
= 3KB) incurs power overhead of 81 mW. The enhancements
related to the victim cache do not intersect with the critical
path, and we do not observe any cycle time overhead.

VI. CONCLUSION AND FUTURE WORK

We proposed and evaluated an approach to reuse the trace
buffer as a victim cache in order to enhance in-field perfor-
mance. The result is a non-standard victim cache design which
reuses the storage area of the trace buffer. We also proposed
and evaluated our approaches to manage the victim cache
in a 2-way SMT processor core. Multi-mode victim cache
provides exclusive victim cache access to a hardware thread
while victim cache partitioning provides the required share
of the victim cache to each thread. Although victim cache
partitioning always performs better than the multi-mode victim
cache, its implementation requires additional hardware. In the
future, we plan to reuse the trace buffer beyond the L1 cache
in other levels of the memory hierarchy. For architectures that
already have a victim cache, the proposed reuse could be
applicable in the form of backup storage for the main victim
cache.

VII. ACKNOWLEDGMENT

This research was partially supported by a research grant
from Freescale Semiconductor and Semiconductor Research
Corporation. We are grateful for their support. We would
also like to thank the anonymous reviewers for their valuable
comments on the manuscript.

REFERENCES

[1] A. Adir, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and J. Schumann,
“Leveraging pre-silicon verification resources for the post-silicon vali-
dation of the IBM POWER7 processor,” in DAC. IEEE, 2011.

[2] A. Nahir, A. Ziv, R. Galivanche, A. Hu, M. Abramovici, A. Camilleri,
B. Bentley, H. Foster, V. Bertacco, and S. Kapoor, “Bridging pre-silicon
verification and post-silicon validation,” in DAC. ACM, 2010.

[3] N. Nicolici and H. F. Ko, “Design-for-debug for post-silicon validation:
Can high-level descriptions help?” in HLDVT. IEEE, 2009.

[4] S.-B. Park and S. Mitra, “Ifra: Instruction footprint recording and
analysis for post-silicon bug localization in processors,” in DAC. ACM,
2008.

[5] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in ISCA.
IEEE, 1990.

[6] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in ACM SIGARCH Computer
Architecture News, vol. 23, no. 2. ACM, 1995, pp. 392–403.

[7] H.-F. Yu, F.-L. Huang, and C.-J. Lin, “Dual coordinate descent methods
for logistic regression and maximum entropy models,” Machine Learn-
ing, vol. 85, no. 1, pp. 41–75, 2011.

[8] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region newton method
for logistic regression,” Journal of Machine Learning Research, vol. 9,
no. Apr, pp. 627–650, 2008.

[9] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in DATE. ACM, 2008.

Fig. 19: Speedup comparison of partitioning using one-stage prediction and the FSM (Figure 11

Fig. 20: Speedup comparison of partitioning using utility-based cache partitioning [37] and logistic regression)

Label Benchmark

a bwaves

b cactus

m perlbench

l tonto

k gobmk

j sjeng

i hmmer

h xalan

g gromacs

f lbm

e bzip2

d gamess

c povray

n h264ref
o astar

Fig. 21: Performance Improvement using Logistic Regression for 4 threads and 8-way set associative victim cache

[10] H. Shojaei and A. Davoodi, “Trace signal selection to enhance timing
and logic visibility in post-silicon validation,” in ICCAD. IEEE, 2010.

[11] Q. Xu and X. Liu, “On signal tracing in post-silicon validation,” in
ASP-DAC. IEEE, 2010.

Controller Victim Cache Multimode-2th Logistic Reg-2th Logistic Reg Logistic Reg-4th
(Figure 4) (Section IV) (Section IV) (Only FSM in Figure 11) (Section IV-D4)

Area (mm2) 0.0155 0.0033 0.0055 0.0008 0.011
Power (mW) 0.91 0.33 0.38 0.09 0.86

TABLE III: Area and power overhead for different controllers

[12] E. Larsson, B. Vermeulen, and K. Goossens, “A distributed architecture
to check global properties for post-silicon debug,” in ETS. IEEE, 2010.

[13] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in
post-silicon validation,” in DATE. European Design and Automation
Association, 2009.

[14] S. Ma, D. Pal, R. Jiang, S. Ray, and S. Vasudevan, “Can’t see the forest
for the trees: State restoration’s limitations in post-silicon trace signal
selection,” in ICCAD. IEEE Press, 2015.

[15] K. Rahmani, S. Proch, and P. Mishra, “Efficient selection of trace and
scan signals for post-silicon debug,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 313–323, 2016.

[16] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selection
using machine learning techniques,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 570–580, 2017.

[17] M. H. Neishaburi and Z. Zilic, “On a new mechanism of trigger gen-
eration for post-silicon debugging,” IEEE Transactions on Computers,
vol. 63, no. 9, pp. 2330–2342, 2014.

[18] H. F. Ko and N. Nicolici, “Mapping trigger conditions onto trigger units
during post-silicon validation and debugging,” IEEE Transactions on
Computers, vol. 61, no. 11, pp. 1563–1575, 2012.

[19] H. F. Ko and N. Nicolici, “On automated trigger event generation in
post-silicon validation,” in DATE. ACM, 2008.

[20] S. Chandran, P. R. Panda, S. R. Sarangi, A. Bhattacharyya, D. Chauhan,
and S. Kumar, “Managing trace summaries to minimize stalls during
postsilicon validation,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 25, no. 6, pp. 1881–1894, 2017.

[21] D. Lin, S. Eswaran, S. Kumar, E. Rentschler, and S. Mitra, “Quick error
detection tests with fast runtimes for effective post-silicon validation and
debug,” in DATE. European Design and Automation Consortium, 2015.

[22] K. Basu and P. Mishra, “Efficient trace data compression using statically
selected dictionary,” in VTS. IEEE, 2011.

[23] A. Vishnoi, P. R. Panda, and M. Balakrishnan, “Cache aware compres-
sion for processor debug support,” in DATE. European Design and
Automation Association, 2009.

[24] A. DeOrio, D. S. Khudia, and V. Bertacco, “Post-silicon bug diagnosis
with inconsistent executions,” in ICCAD. IEEE, 2011.

[25] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-silicon validation
of the memory subsystem in multi-core designs,” in HPCA. IEEE,
2009.

[26] R. Abdel-Khalek and V. Bertacco, “Post-silicon platform for the func-
tional diagnosis and debug of networks-on-chip,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 3s, p. 112, 2014.

[27] C.-H. Lai, Y.-C. Yang, and J. Huang, “A versatile data cache for trace
buffer support,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 61, no. 11, pp. 3145–3154, 2014.

[28] B. W. Mammo, V. Bertacco, A. DeOrio, and I. Wagner, “Post-silicon
validation of multiprocessor memory consistency,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 1027–1037, 2015.

[29] C.-H. Lai, F.-C. Yang, and J. Huang, “A trace-capable instruction cache
for cost-efficient real-time program trace compression in SoC,” IEEE
Transactions on Computers, vol. 60, no. 12, pp. 1665–1677, 2011.

[30] Y. Chen, T. Chen, L. Li, R. Wu, D. Liu, and W. Hu, “Deterministic
replay using global clock,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 10, no. 1, p. 1, 2013.

[31] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible soc security architecture,” in DAC. IEEE, 2016.

[32] R. I. Bahar, G. Albera, and S. Manne, “Power and performance tradeoffs
using various caching strategies,” in ISLPED. IEEE, 1998.

[33] D. Stiliadis and A. Varma, “Selective victim caching: A method to
improve the performance of direct-mapped caches,” IEEE transactions
on Computers, vol. 46, no. 5, pp. 603–610, 1997.

[34] C. Yu and P. Petrov, “Off-chip memory bandwidth minimization through
cache partitioning for multi-core platforms,” in DAC. ACM, 2010.

[35] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and
partitioning for energy optimization in real-time multi-core systems,” in
DAC. ACM, 2011.

[36] S. Mittal, Y. Cao, and Z. Zhang, “Master: A multicore cache energy-
saving technique using dynamic cache reconfiguration,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 8,
pp. 1653–1665, 2014.

[37] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO. IEEE, 2006.

[38] R. Jain, P. R. Panda, and S. Subramoney, “A coordinated multi-agent
reinforcement learning approach to multi-level cache co-partitioning,” in
DATE. IEEE, 2017.

[39] A. Gaisler, “Leon3 processor. http://www.gaisler.com.”
[40] C. Bishop, “Pattern recognition and machine learning: springer new

york,” 2006.
[41] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,

“Liblinear: A library for large linear classification,” Journal of machine
learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[42] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proc. International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, 2011.

[43] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” in
ACM SIGMETRICS, 2003.

[44] A. Jaleel, “Memory characterization of workloads using instrumentation-
driven simulation,” Web Copy: http://www. glue. umd. edu/ajaleel/work-
load, 2010.

Neetu Jindal is a research scholar in the Department
of Computer Science and Engineering at Indian
Institute of Technology, Delhi. She received her
Bachelors’ degree in Computer Science and Engi-
neering from Kurukshetra University. Her research
interests include post-silicon validation methodolo-
gies, architectural design-space exploration and ma-
chine learning applications to computer architecture
optimizations.

Preeti Ranjan Panda received his B. Tech. degree
in Computer Science and Engineering from the IIT
Madras and his M. S. and Ph.D. degrees from the
University of California at Irvine. He is currently a
Professor in the Department of Computer Science
and Engineering at IIT Delhi. He has previously
worked at Texas Instruments and Synopsys, and
has been a visiting scholar at Stanford University.
His research interests are in the areas of Embedded
Systems and Design Automation. He is the author
of two books: Memory issues in Embedded Systems-

on-chip: Optimizations and Exploration and Power-efficient System Design.
He is a recipient of an IBM Faculty Award and a Department of Science
and Technology Young Scientist Award. Prof. Panda has served on the the
editorial boards of IEEE TCAD, ACM TODAES, IEEE ESL, and IJPP, and as
Technical Program co-Chair of CODES+ISSS and VLSI Design. He has also
served on the technical program committees and chaired sessions at several
conferences including DAC, ICCAD, DATE, CODES+ISSS, ISLPED, and
EMSOFT.

Smruti R. Sarangi is an Assistant Professor in the
Department of Computer Science and Engineering,
IIT Delhi, India. He has spent four years in industry
working in IBM India Research Labs, and Synopsys.
He graduated with a M.S and Ph.D in computer ar-
chitecture from the University of Illinois at Urbana-
Champaign in 2007, and a B.Tech in computer
science from IIT Kharagpur, India, in 2002. He
works in the areas of computer architecture, parallel
and distributed systems. Prof. Sarangi is a member
of the IEEE and ACM.

